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Abstract
There has been renewed interest in the exploitation of Barta’s configuration
space theorem (BCST) (Barta 1937 C. R. Acad. Sci. Paris 204 472) which
bounds the ground-state energy, Infx

(
H�(x)

�(x)

)
� Egr � Supx

(
H�(x)

�(x)

)
, by using

any � lying within the space of positive, bounded, and sufficiently smooth
functions, C. Mouchet’s (Mouchet 2005 J. Phys. A: Math. Gen. 38 1039)
BCST analysis is based on gradient optimization (GO). However, it overlooks
significant difficulties: (i) appearance of multi-extrema; (ii) inefficiency of GO
for stiff (singular perturbation/strong coupling) problems; (iii) the nonexistence
of a systematic procedure for arbitrarily improving the bounds within C.
These deficiencies can be corrected by transforming BCST into a moments’
representation equivalent, and exploiting a generalization of the eigenvalue
moment method (EMM), within the context of the well-known generalized
eigenvalue problem (GEP), as developed here. EMM is an alternative
eigenenergy bounding, variational procedure, overlooked by Mouchet, which
also exploits the positivity of the desired physical solution. Furthermore, it
is applicable to Hermitian and non-Hermitian systems with complex-number
quantization parameters (Handy and Bessis 1985 Phys. Rev. Lett. 55 931, Handy
et al 1988 Phys. Rev. Lett. 60 253, Handy 2001 J. Phys. A: Math. Gen. 34 5065,
Handy et al 2002 J. Phys. A: Math. Gen. 35 6359). Our analysis exploits various
quasi-convexity/concavity theorems common to the GEP representation. We
outline the general theory, and present some illustrative examples.

PACS numbers: 03.65.Ca, 03.65.Ta, 03.65.Vf

1. Introduction

1.1. Deficiencies of Barta’s configuration space formulation

The recent work by Mouchet (2005) develops gradient optimization strategies for
implementing Barta’s (Barta 1937) eigenenergy bounding procedure for the (bosonic)
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ground-state energy, Egr. In particular, for any strictly positive trial function, � > 0, within
the set of positive, twice differentiable, and bounded functions, C, the infimum and supremum,
as defined below, generate lower and upper bounds to the ground-state energy:

Infx

(
H�(x)

�(x)

)
� Egr � Supx

(
H�(x)

�(x)

)
. (1)

The restriction to the ground state is because of the well-known theorem that in configuration
space, the ground-state wavefunction is positive, �gr > 0.

Mouchet’s analysis assumes that one is working with closed form expressions for the trial
wavefunction. Although this approach is quite flexible, it is an incomplete resolution of an
important, well known, deficiency of Barta’s formalism (i.e. ‘Barta’s deficiency’). Specifically,
given bounds generated from an initial trial function, how does one systematically improve
upon this, to arbitrary tightness of the bounds, within the set C? This is particularly important
since the selection of suitable trial functions is not an intuitive process. To begin to answer
this within configuration space requires infinite parameter representations for all of C. This is
not possible.

Besides this limitation, Barta’s configuration space formulation also presents significant
multi-extrema complications in sampling the ratio H�(x)

�(x)
over all x values. Clearly, any

alternate approach that convexifies this problem (or its equivalent), thereby requiring the
determination of one global extremum, would be a tremendous improvement. There are
many important problems in physics where the appearance of multi-minima, and strategies
for circumventing these, is a major concern. One important class of methods for doing this
is simulated annealing (Kirkpatrick et al 1983). Related methods such as iterative annealing
have impacted more contemporary research such as those studying the protein folding problem
(Thirumalai and Hyeon 2005).

An additional difficulty with gradient approaches is that they may not be the ideal strategy
for dealing with stiff systems (such as those associated with singular perturbation/strong
coupling interactions) for which very small integration steps may slow the global search for
the infimum and supremum. (By way of contrast, the approach presented here does not
require a gradient search. Instead a linear programming-based bisection approach proves
highly effective.)

1.2. A remedy to Barta’s deficiencies: the eigenvalue moment method

In the 1980s, these deficiencies were well known to D Bessis and his group at Saclay,
particularly as a consequence of Barnsley’s (Barnsley 1978) earlier studies on Barta’s theorem.
Their objective was to develop tight (converging) bounds for the notoriously difficult quadratic
Zeeman effect for hydrogenic atoms in superstrong magnetic fields (QZE). In particular,
Le Guillou and Zinn-Justin (1983) emphasized an intricate order dependent, hypervirial,
conformal analysis which gave numerical predictions for the QZE ground-state binding energy.
The QZE is an example of a singular perturbation/strong coupling problem (Bender and Orszag
1978), for which different methods (i.e. variational, numerical, analytical, etc) can yield widely
varying results. Bessis was interested in developing positivity based alternatives to Barta’s
theorem by which to asses the accuracy of Le Guillou and Zinn-Justin’s results.

Independent of these concerns, Handy (1984) discovered that certain well-known
theorems within the classic mathematical literature known, collectively, as the moment problem
(Shohat and Tamarkin 1963) could be used to quantize physical systems through the generation
of (geometrically) converging, lower and upper bounds, to the ground-state energy. The
moment problem is concerned with the necessary and sufficient conditions the power moments
of a positive function, µp = ∫

dx xp�(x), must satisfy in order to determine that function.
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More generally, Handy’s interest in moments’ quantization formulations originated from
earlier studies that suggested their effectiveness in studying the multiscale dynamics of certain
singular perturbation-strong coupling problems in field theory (Handy 1981). That is, a
moments representation implicitly defined a multiscale hierarchy of sensitivity to smaller and
smaller scale structures. This was a precursor to wavelet theory (Grossmann and Morlet 1984,
Daubechies 1988), and was used, more recently, to incorporate continuous wavelet transform
theory into quantum mechanics (Handy and Murenzi 1997, 1998, 1999).

Handy’s eigenenergy bounding procedure exploited the confluence of several, hitherto,
separate results. These were as follows: (i) the (multidimensional) Schrödinger equation with
rational fraction potential could be readily transformed into a moment equation recursion
relation for the power moments of the wavefunction, µp = ∫

D dx xp�(x), involving the
energy as a parameter, E; (ii) the (multidimensional) bosonic ground-state wavefunction must
be positive, �gr > 0; (iii) the moment problem positivity theorems define an infinite hierarchy
of constraints on the power moments, and in turn, on E. The particular positivity theorem used
by Handy (1984) was the well-known nesting constraints for the (diagonal and off-diagonal)
Pade approximants (generated from the µp’s) of the associated Stieltjes integral for �gr (Baker
1975). (For future reference, as discussed in the appendix, if the support space defining the
moments correspond to D = �, or �+, the moments are referred to as Hamburger or Stieltjes,
respectively.)

In their first collaboration, Handy and Bessis (1985) recognized that the Stieltjes–
Pade theorems would not be extendable to multidimensions (in anticipation of applying the
underlying moment problem quantization philosophy to the QZE problem). They proposed
to exploit the moment problem positivity theorems based on the nonlinear, Hankel–Hadamard
(HH) determinantal inequalities. These could be extended, in principle, to multidimensions
(Devinatz 1957); however, this proved too costly. In a subsequent breakthrough (Handy et al
1988), they realized that the HH nonlinear formulation could be transformed into an equivalent
linearized version, which was then amenable to linear programming analysis (Chvatal 1983).
Handy devised an efficient (bi-section) method referred to as the cutting algorithm, which led
to the generation of tight, converging, bounds to the QZE problem, confirming the results of
Le Guillou and Zinn-Justin (Handy et al 1988). The entire procedure is referred to as the
eigenvalue moment method (EMM).

Thus, historically, the EMM approach was specifically invented to bypass all of the
unattractive features of Barta’s configuration space theorem. Mouchet overlooks this in his
review of variational (bounding) methods, despite the fact that the EMM procedure is an affine
map invariant, variational procedure (Handy and Murenzi 1998). That is, the EMM bounds
automatically sample over all affine map transformations (translations, scalings, rotations,
etc) of the trial functions (i.e. polynomials). Affine maps are at the heart of fractals (Barnsley
1988) and wavelet transform theory (Grossman and Morlet 1984, Daubechies 1988). Fractals
and wavelets represent important representations for dealing with systems with significant
multiscale structures. For this same reason, the EMM bounds are very good for dealing with
(stiff) singular perturbation type systems with significant multiscale dynamics.

1.3. Moment problem reformulation of Barta’s theorem: the generalized eigenvalue
problem

Despite the successes of the EMM procedure, Mouchet’s work has inspired the author to
develop a moment problem counterpart to Barta’s configuration space theorem. Several new
results ensue from this. The first is that the new formulation does not require the introduction
of a moment equation. Instead, we are able to generalize the underlying EMM philosophy
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in a manner more in keeping with operator (matrix) theory. Whereas the moments in the
EMM formulation are constrained by the moment equation relations, in the new formulation,
all of the moments are unconstrained relative to one another. The energy parameter does
not explicitly appear. Instead, one studies the extremal eigenvalues of the corresponding
generalized eigenvalue problem (GEP) (Boyd and Vandenberghe 2004) defined according
to H−→

V = λU−→
V , where H represents the moment representation operator (matrix) for the

Hamiltonian, and U represents a positive definite matrix operator (the Hankel moment matrix).
We are not interested in the generalized eigenvectors ,

−→
V , but make reference to them for

clarity. Instead, it is the extremal eigenvalues, λmin � λ � λmax, that are of interest, since
these will directly relate to the infimum and supremum expressions in Barta’s configuration
space theorem.

We will investigate two different versions of the above GEP system. In the first case, we
will assume that the moments, µp, used in defining the (H, U) operator pair, correspond to
a positive trial function (i.e. either we have a closed form for the function, �, and its power
moments, µp; or we only know the µp’s, but have no closed form expression for �). We
can then generate monotonically converging sequences to both the infimum and supremum:
Infx

(
H�
�

)
< · · · < λmin;n < · · · < λmin;1 and λmax;1 < · · · < λmax;n < · · · < Supx

(
H�
�

)
.

In principle, this already defines one clear advantage, since any multi-extrema features of the
ratio H�

�
are circumvented by our ability to generate monotonically converging sequences.

The (H, U) matrix operator pair, although of infinite dimension, can be studied in terms
of their finite-dimensional, upper left hand, submatrices. For each of these submatrices, we
can define a finite-dimensional, convex moment variable space, Un. In our second study of the
GEP formulation, we will determine the optimal values, over Un, for each of the extremal GEP
eigenvalues (i.e. Supµ∈Un

(λmin;n(µ)) and Infµ∈Un
(λmax;n(µ))). These will generate converging

bounds to the ground-state energy: Infµ∈Un
(λmax;n(µ)) < Egr < Supµ∈Un

(λmin;n(µ)). The
EMM formalism plays an important role in proving the last result.

Readers not familiar with the EMM formalism should consult appendix A for a review
which also clarifies the notation adopted in the rest of this work. For those familiar with the
EMM formulation, they will recall that the moment equation representation leads to relations
of the form µp = M̂E(p, 0) +

∑ms

�=1 M̂E(p, �)µ�, where the M̂E(p, �) coefficients are known
functions of the energy parameter, E. These moment constraints divide the infinite set of
moments into two sets: the unconstrained moments (referred to as either the initialization or
missing moments); and the constrained moments. For one-dimensional systems, the first set
corresponds, after imposing a normalization, to ms < ∞ (problem dependent) variables. For
multidimensional systems, both sets are infinite in number; although they define an infinite
hierarchy of finite-dimensional subspaces within which the EMM analysis leads to exact (non-
truncated) results. All the moments, and (unknown) energy (for the ground state), must then
satisfy the Hankel–Hadamard determinantal constraints, denoted by �m,n(µ) > 0, as defined
in appendix A. Within each finite-dimensional subspace (indexed by the parameter Q), the
computational focus is to determine those E values for which there exist moment solutions to
the HH inequalities. The set of admissible energies correspond to an interval whose endpoints
bound the true ground-state energy, Egr ∈ (

EL
Q,EU

Q

)
.

2. Moment problem reformulation of Barta’s theorem as a generalized eigenvalue
problem

In this work, we directly transform Barta’s configuration space theorem into a moment problem
representation. By so doing, we obtain a theoretically complete formalism that addresses
and solves Barta’s configuration space deficiencies. Our analysis is limited to Hamiltonian
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systems with rational fraction potentials, since in such cases, the Schrödinger equation can
be transformed into a moment equation representation. This is not a serious limitation, since
such Hamiltonians (and others that can be transformed into differential representations with
rational fraction coefficients) correspond to a large, and important, class of physical systems.

In contrast to the EMM approach which restricts itself to the set of moments satisfying
the physical moment equation, the new formalism makes no such restriction.

The review of the EMM formalism, given in appendix A defines UQ as a subset within the
domain of initialization moments (i.e. the subset of initialization moment values whose moment
equation generated moments, up to moment order Q, satisfy the HH positivity constraints).
Within the present generalized eigenvalue problem (GEP) representation, where the moments
are no longer constrained by a moment equation, this same notation will be appropriately
modified as given below.

Definition (as implemented within the EMM formulation, for moments constrained by a
moment equation).

UQ =
{(

µ1, . . . , µms

)∣∣∣∣µp = M̂E(p, 0) +
ms∑
�=1

M̂E(p, �)µ�, 0 � p � Q,

and �0,n(µ) > 0, 0 � n � Q

2
,

}
⊂ (−1, 1)ms .

Note that the elements of UQ implicitly must satisfy some, physically motivated, normalization
prescription. The �0,n(µ)’s are the Hankel–Hadamard (HH) determinants and the M̂E(p, �)’s
are the coefficients of the EMM moment equation recursion relation (refer to equation (A.1),
and equations (A.3)–(A.6), in appendix A).

The GEP modification of this same notation will be

Definition (modification within the GEP formalism).

UQ =
{
(µ0, . . . , µQ)

∣∣∣∣ where �0,n(µ) > 0, 0 � n � Q

2

}
.

That is, UQ refers to the domain of Hamburger moments, up to moment order, Q, satisfying
all the corresponding HH positivity constraints (and not constrained to satisfy any moment
equation). In either case, Q is implicitly an even number.

It is also implicitly assumed that the elements of UQ must satisfy some physically
motivated normalization prescription.

Within each of the finite-dimensional subsets, UQ, Barta’s relations manifest themselves
in terms of a generalized eigenvalue problem (GEP) (Watkins 2002)

H|−→V 〉 = λU|−→V 〉, (2)

where H and U correspond to finite, real and symmetric matrices, to be defined in the
appendices. The matrix elements will be linear in the moments. Because of the restriction to
UQ the U-Hankel matrix is positive definite. The matrices (H, U) are designated as a symmetric
pair. As will be seen by the explicit example discussed below, whereas all of the moment
variables in UQ contribute to the structure of H, a reduced number of these contribute to U;
however, this reduced number still guarantee the positive definiteness of U.

Through a Cholesky decomposition (Watkins 2002), U = RtR, the GEP is transformed
into a standard, symmetric matrix, eigenvalue problem,

R−tHR−1|−→W 〉 = λ|−→W 〉. (3)
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The extremal eigenvalues λmin � λ � λmax, satisfying the above, or alternatively
Det(H − λU) = 0, are defined by

λmin(µ) = Inf−→
C

〈−→C |H(µ)|−→C 〉
〈−→C |U(µ)|−→C 〉

, {µ} ∈ UQ; (4)

and

λmax(µ) = Sup−→
C

〈−→C |H(µ)|−→C 〉
〈−→C |U(µ)|−→C 〉

, {µ} ∈ UQ, (5)

where
−→
C �= −→

0 . Of course, we also have λmin(µ) = −Sup−→
C

〈−→C |−H(µ)|−→C 〉
〈−→C |U(µ)|−→C 〉

.

The above ratios can also be written in terms of
〈−→C |H(µ)|−→C 〉

〈−→C |−→C 〉
〈−→C |U(µ)|−→C 〉

〈−→C |−→C 〉
. Let λ

min,max
H,U (µ) denote the

extremal eigenvalues of the H and U matrices, respectively. Since λmin
U (µ) > 0, if we also

assume that λmin
H (µ) > 0 (for simplicity), then λmin

H (µ)

λmax
U (µ)

� λmin(µ) � λmax(µ) � λmax
H (µ)

λmin
U (µ)

.

However, if λmin
H (µ) < 0, then λmin

H (µ)

λmin
U (µ)

� λmin(µ). These expressions will prove important
later on.

Physicists refer to any function which, locally, lies below the tangent plane as a convex
function. Mathematicians define a function, f (x), as convex if the set {(x, y)|y � f (x)} is
convex. Thus, what a physicist would regard as a concaved function, is referred to as a convex
function by mathematicians. Throughout this work we will use the physicist’s definition,
except in a few cases where we cite the actual theorems (placing quotation marks around
them), as they appear in the literature.

Definition. (
Concaved
Convex

)
Function[physicists] ≡

(
‘Convex′

‘Concaved′

)
Function[mathematicians].

It is a well-known theorem that the smallest eigenvalue of a symmetric matrix is a convex
function with regards to the matrix elements as variables. This led to various alternative
algorithmic strategies (i.e. gradient methods) for implementing EMM (Handy et al 1991,
1996).

The smallest eigenvalue of the generalized eigenvalue problem is not convex as such,
but it shares the good fortune that it does not have any multi-maxima or saddle points. That
is, there can be regions of relative flatness. Thus, although there can only be one global
maximum value, the points in UQ corresponding to the global maximum may not be unique.
These properties are what the mathematicians refer to as quasi-‘concaved’.

Despite this, in the infinite limit (all of moment space) the physical problem strongly
suggests that the point, in the moment variables space, corresponding to a global maximum
for λmin(µ), is unique. This is because there can only be one physical ground state (the ground-
state energy can only be associated with one point in U∞). Since we are only interested in
obtaining tight bounds for Egr these issues do not affect this objective.

We now revert to the mathematics nomenclature which is the opposite to the physicist’s
intuitive interpretation, as previously noted.

Definition. A function, f (−→µ ) : U → �, is quasi-‘concaved’ if

f (s−→µ 1 + (1 − s)−→µ 2) � min{f (−→µ 1), f (−→µ 2)}, 0 � s � 1, −→µ 1,2 ∈ U . (6)
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Actually, this is an ‘if only if’ statement. The usual definition is that a function, f (x), is
‘quasiconcaved’ if the superlevel sets Sa ≡ {x|f (x) � a} are convex.

It therefore follows that for a quasi-‘concaved’ function there can be flat regions where the
function stays constant. However, along the one-dimensional path defined by 0 < s < 1, there
can be no local minimum. If the function is strictly ‘concaved’, then any local differential
search will always yield a path which leads to the global maximum. However, for quasi-
‘concaved’ functions, within regions of flatness, more effort may be required to find a path
that leads to a global maximum.

We have the following important theorem (mathematical nomenclature).

Theorem 1. λmax(µ) is a quasi-‘convex’ function of the matrix elements (H, U), which are
linear in the moments (Boyd and Vandenberghe 2004).

Similarly, λmin(µ) (being the negative of a quasi-‘convex’ function, refer to discussion
following equation (5)) is a quasi-‘concaved’ function.

From the definition of the extremal eigenvalues one has that λmin(µ) � λmax(µ). However,
there will be moment elements in UQ for which the extremal eigenvalues coincide. This will be
the case for those satisfying the moment equation, up to moment order Q (i.e. those moments
that also satisfy the EMM moment equation).

Definition. Denote by −→µ E = {µ0, µ1, . . . , µQ} ∈ UQ, an element of UQ that also satisfies
the moment equation (equation (A.1), in appendix A), for the given E value. Such a point,
by definition, automatically satisfies the EMM positivity constraints. This is only possible
if E ∈ (

EL
Q,EU

Q

)
. That is, it must lie within the EMM eigenenergy bounds. Now use it to

generate the (H, U) symmetric pair matrices, as defined in the appendices. In appendix B
appears the proof of

Theorem 2.

λmin(µE) = E = λmax(µE). (7)

We shall denote by UQ;EMM ⊂ UQ, the subset of points satisfying the EMM conditions (i.e.
satisfies the moment equation up to order Q, and the positivity conditions, for an E value that
must lie within the EMM bounds).

Let us explicitly distinguish the extremal GEP eigenvalues for each Un of dimension
n + 1 by the notation: λmax/min;n(µ). Also, let C denote the set of functions that are positive,
bounded (exponentially decreasing), and continuously differentiable up to the second order.
In appendix B it is established that if � ∈ C, and µp = ∫

dx xp�(x), p < ∞ are its moments,
then

Theorem 3.

Infx

(
H�(x)

�(x)

)
� λmin;n+1(µ) � λmin;n(µ), (8)

λmax;n(µ) � λmax;n+1(µ) � Supx

(
H�(x)

�(x)

)
, (9)

and

lim
n→∞

(
λmin;n(µ)

λmax;n(µ)

)
=


 Infx

(
H�(x)

�(x)

)
Supx

(
H�(x)

�(x)

)

 , (10)

for each � ∈ C.
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This is an interesting result, particularly when combined with sequence acceleration
methods, since it allows one to determine Barta’s lower and upper bounds for a function
whose moments are known, even when the function is not given in closed form. Also, the
monotonic nature of the results may prove useful in circumventing potential multi-extrema
features of the H�

�
ratio, when evaluated in terms of Barta’s configuration space formulation.

Let us now define the Sup and Inf of the extremal eigenvalues over their finite-dimensional
convex domain, Un:(

λ
Sup
min;n

λInf
max;n

)
≡

(
Supµ∈Un

(λmin;n(µ))

Infµ∈Un
(λmax;n(µ))

)
. (11)

From equation (7), since Un;EMM ⊂ Un, we must have that λ
Sup
min;n � EU

n , the EMM upper
bound. Similarly, λInf

max;n � EL
n , the EMM lower bound:

Theorem 4.
λInf

max;n � EEMM-lowerbound
n � Egr � EEMM-upperbound

n � λ
Sup
min;n, (12)

and, in the infinite limit, n → ∞:

λInf
max;n � λInf

max;n+1 � Egr � λ
Sup
min;n+1 � λ

Sup
min;n. (13)

This is also proved in appendix B.

2.1. Important assumption/condition

Although Un will be a bounded convex set through the normalization conditions used, it is also
important that its boundary (δU) does not include points at which the positive definiteness is
lost. That is, if −→µb ∈ δU , we do not want �0,j�n(

−→µb) = 0, or λmin
U (−→µb) = 0, using the notation

in the discussion following equation (5). If this is were to happen, then the λ
Sup
min;n, as well

as λInf
max;n, could become singular (i.e. +∞,−∞, respectively). In the present application, we

can insure the above by simply imposing additional moment inequality constraints associated
with any (rough) upper bound to the ground-state energy. This will be clarified in the next
section, where we implement the numerical analysis on a specific problem.

3. Some numerical results

We will use the quartic potential, V (x) = x4, to illustrate, numerically, most of the previous
results. The ground-state energy is Egr = 1.060 362 090 484.

3.1. Equations (8)–(10), using �(x) = N e−x2

This is a trivial example. One has H�(x)

�(x)
= 2 − 4x2 + x4. The infimum is Inf(2 − 4x2 + x4) =

−2. The even order, Gaussian function power moments, satisfy the recursion relation µp+2 =( 1+p

2

)
µp, p � 0. Normalizing according to µ0 ≡ 1, determines the normalization factor N .

Since the Gaussian function, �g = e−x2
also satisfies −∂2

x�g +4x2�g = 2�g , an alternate
recursion relation for the moments is −p(p − 1)µp−2 + 4µp+2 = 2µp. Using this, one can
transform the matrix structure in equation (B.11) (i.e. −p(p − 1)µp−2 + µp+4 − λµp) into
−4µp+2 +µp+4 − (λ−2)µp. The generalized eigenvalue problem results, for this problem, are
given in table 1. Note that the convergence is slow, but consistent with the various theorems.
We also note the curious repetitive, non-repetitive, structure manifested by the eigenvalues
(confirmed, to high precision, through Mathematica). No sequence acceleration analysis has
been attempted.



(Quasi)-convexification of Barta’s (multi-extrema) bounding theorem 3433

Table 1. Quartic potential results using N e−x2
trial function; Barta’s lower bound is −2 (note that

Dim ≡ N + 1 and max moment order, Q, satisfy Q = 4 + 2N ).

Dim(Q) λmin:Q Dim(Q) λmin:Q Dim(Q) λmin:Q

1 (4) 0.750 00 34 (70) −1.742 04 67 (136) −1.863 61
2 (6) −0.250 00 35 (72) −1.751 51 68 (138) −1.866 87
3 (8) −0.250 00 36 (74) −1.751 51 69 (140) −1.866 87
4 (10*) −0.458 10 37 (76*) −1.753 80 70 (142) −1.868 40
5 (12) −0.825 22 38 (78) −1.754 47 71 (144) −1.868 40
6 (14) −0.825 22 39 (80) −1.754 47 72 (146) −1.868 800 4
7 (16) −1.062 61 40 (82) −1.776 64 73 (148) −1.868 800 4
8 (18) −1.062 61 41 (84) −1.776 64 74 (150*) −1.868 801 3
9 (20*) −1.067 05 42 (86) −1.792 00 75 (152) −1.875 13

10 (22) −1.288 93 43 (88) −1.792 00 76 (154) −1.875 13
11 (24) −1.288 93 44 (90) −1.800 67 77 (156) −1.880 65
12 (26) −1.378 98 45 (92) −1.800 67 78 (158) −1.880 65
13 (28) −1.378 98 46 (94) −1.804 22 79 (160) −1.884 75
14 (30*) −1.386 56 47 (96) −1.804 22 80 (162) −1.884 75
15 (32) −1.462 59 48 (98*) −1.804 83 81 (164) −1.887 46
16 (34) −1.462 59 49 (100) −1.809 20 82 (166) −1.887 46
17 (36) −1.541 81 50 (102) −1.809 20 83 (168) −1.888 94
18 (38) −1.541 81 51 (104) −1.822 58 84 (170) −1.888 94
19 (40) −1.566 36 52 (106) −1.822 58 85 (172) −1.889 53
20 (42) −1.566 36 53 (108) −1.832 19 86 (174) −1.889 53
21 (44*) −1.567 86 54 (110) −1.832 19 87 (176*) −1.889 62
22 (46) −1.613 60 55 (112) −1.838 02 88 (178) −1.891 37
23 (48) −1.613 60 56 (114) −1.838 02 89 (180) −1.891 37
24 (50) −1.657 66 57 (116) −1.840 77 90 (182) −1.895 88
25 (52) −1.657 66 58 (118) −1.840 77 91 (184) −1.895 88
26 (54) −1.676 29 59 (120) −1.841 515 92 (186) −1.899 58
27 (56) −1.676 29 60 (122) −1.841 515 93 (188) −1.899 58
28 (58*) −1.680 12 61 (124*) −1.841 519 94 (190) −1.902 36
29 (60) −1.686 37 62 (126) −1.850 45 95 (192) −1.902 36
30 (62) −1.686 37 63 (128) −1.850 45 96 (194) −1.904 22
31 (64) −1.721 07 64 (130) −1.858 18 97 (196) −1.904 22
32 (66) −1.721 07 65 (132) −1.858 18 98 (198) −1.905 29
33 (68) −1.742 04 66 (134) −1.863 61 99 (200) −1.905 29

100 (202) −1.905 76
101 (204) −1.905 76

∗ Except for these entries, all others appear in pairs, to 20 significant figures

3.2. Equations (8)–(10), using �(x) = |�(x)|2, where �(x) satisfies the PT-invariant
Schrödinger equation −∂2

x� − (ix)3� = E�

We now investigate the utility of the previous formalism when the positive trial function is
not known, in closed form; although the moments are (numerically) known. For this exercise,
we could take �(x) to be the (positive) ground state of any (solvable) Schrödinger potential
problem, −∂2

x�s + Vs(x)�s(x) = Es�s(x). In such cases, one would determine the Inf/Sup

of (i.e. H4 ≡ −∂2
x + x4), H4�s

�s
= − ∂2

x �s

�s
+ x4 = Es − Vs(x) + x4. This would then be a trivial

analysis.
Instead, we pursue a different class of problems whose differential structure does not lead

to an easily calculable set of Barta bounds. Such is provided by the class of non-Hermitian
systems that have received much attention in the context of PT-symmetry breaking systems
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Table 2. Quartic potential results using as trial configuration the |�(x)|2 solution
corresponding to PT-invariant, non-Hermitian, system −∂2

x�(x) − (ix)3�(x) = E�(x), for
E = 1.156 267 071 988 1133. Barta’s lower bound is approximately (−1.782) , based upon Runge–
Kutta integration.

Q λmin:Q Q λmin:Q

4 0.765 183 031 6 30 −1.412 946 343
6 −0.370 149 731 6 32 −1.412 946 343
8 −0.579 749 584 2 34 −1.466 405 630

10 −0.579 749 584 2 36 −1.466 405 630
12 −0.917 569 994 9 38 −1.471 430 659
14 −1.025 936 484 40 −1.505 086 215
16 −1.025 936 484 42 −1.505 086 215
18 −1.202 683 806 44 −1.535 124 305
20 −1.202 683 806 46 −1.535 124 305
22 −1.202 840 090 48 −1.530 286 871
24 −1.349 131 584 50 −1.556 428 376
26 −1.349 131 584 52 −1.556 428 376
28 −1.369 576 335 54 −1.579 966 618

56 −1.579 966 618 4
58 −1.579 966 618 4
60 −1.588 250 832 6

(Bender and Boettcher 1998). The simplest example of this is the well known V (x) = −(ix)3

system, which we write as −∂2
x�(x) − (ix)3�(x) = E�(x). This system admits only

real eigenenergies; however, its eigenstates are all complex functions. Nevertheless, the
probability density, �(x) = |�(x)|2 ≡ S(x) > 0, satisfies a linear, fourth-order differential
equation (Handy 2001):

∂x

(
− 1

x3
∂3
xS(x) − 4

E
x3

∂xS(x)

)
+ 4x3S(x) = 0. (14)

Although all of the bound states of this system are positive, we shall work with the one
corresponding to the smallest E = 1.156 267 071 988 1133. The Hamburger moments of the
even function, S(x), satisfy a simple recursion relation (Handy 2001):

4µp+7 = (p + 4)p(p − 1)(p − 2)µp−3 + 4Ep(p + 4)µp−1, (15)

for p � 0. The GEP-moment analysis, given in table 2, tells us that Inf
(

H4S(x)

S(x)

)
< −1.57. In

order to verify this, we can implement a Runge–Kutta analysis on S(x), in order to calculate
− S ′′

S
. If one is not too careful (i.e. implementation of a naive second order finite differencing),

a significantly wrong answer is obtained (i.e. Barta’s infimum is O(.3)). Instead, by using the
relation (

H4S(x)

S(x)

)
= −�∂2

x�∗ + �∗∂2
x� + 2∂x�

∗∂x�

�∗�
+ x4 = 2E − 2

∣∣∣∣∂x�

�

∣∣∣∣
2

+ x4,

the resulting expression lends itself to a more accurate Runge–Kutta verification, yielding
the (approximate) Barta infimum as −1.782. This is very consistent with the GEP generated
results in table 2.

3.3. Generating converging bounds for quartic potential (theorem 4): the need for a
rough upper bound to the energy

In this last example, we will not work with a fixed set of moments for a positive trial
configuration. Instead, we will implement an optimization procedure for determining
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Sup(λmin;Q(µ)) and Inf(λmax;Q(µ)), for µ ∈ UQ. Contrary to the gradient analysis in
Mouchet’s (Mouchet 2005) work, we can determine these quantities by implementing a
bisection type analysis within the λ-variable space, similar to that developed within the EMM,
linear programming based, ‘cutting-algorithm’ (Handy et al 1988).

3.3.1. Defining UQ. The UQ space is defined as the set of Hamburger moments,
{(µ0, . . . , µQ)}, satisfying

〈−→C 1|µn1+n2 |−→C 1〉 > 0, ∀−→
C 1 �= 0, 0 � n1 + n2 � Q. (16)

In addition, for the case of Sup(λmin;Q(µ)), we are interested in the set of λl’s satisfying (i.e.
equation (B.11))

〈−→C 2| − (n1 + n2)(n1 + n2 − 1)µn1+n2−2 + µn1+n2+4 − λlµn1+n2 |
−→
C 2〉 > 0, ∀−→

C 2 �= 0,

0 � n1 + n2 + 4 � Q. (17)

Whereas, for the Inf(λmax;Q(µ)), the latter set of inequalities are replaced by (i.e.
equation (B.15))

〈−→C 2|λuµn1+n2 + (n1 + n2)(n1 + n2 − 1)µn1+n2−2 − µn1+n2+4|−→C 2〉 > 0, ∀−→
C 2 �= 0,

0 � n1 + n2 + 4 � Q. (18)

3.3.2. Normalization prescription: bounding UQ. One must also impose some normalization
condition. A choice that leads to a bounded UQ set is

µ0 + µQ(even) = 1. (19)

To study the consequences of this, note that the physical moments for the ground-state
wavefunction (i.e. assume � = �gr) satisfy

µp =
∫ +1

−1
dx xp�(x) +

∫
x /∈[−1,1]

dx xp�(x). (20)

The p = even moments must be positive and satisfy

0 < µp=even =
∫ +1

−1
dx xp�(x) +

∫
x /∈[−1,1]

dx xp�(x)<

∫ +1

−1
dx�(x) +

∫
x /∈[−1,1]

dx xQ�(x),

(21)

or

0 < µp=even < µ0 + µQ = 1. (22)

For the odd-order moments, a similar set of relations ensues for |µp=odd| �
∫ +1
−1 dx|xp|�(x) +∫

x /∈[−1,1] dx|xp|�(x) < µ0 + µQ = 1. Thus, we have

−1 � µp=odd � +1. (23)

3.3.3. Linear programming—bisection algorithm for determining λ
Sup
min and λ

Sup
min. The

following algorithm implicitly makes use of the quasi-convex nature of λmin;Q(µ) and the
quasi-concave structure of λmax;Q(µ) for µ ∈ UQ.

We outline the basic structure of our computational algorithm. Assume that for a trial
positive solution, (µ∗

0, . . . , µ
∗
Q), we have determined its corresponding extremal eigenvalue,

λmin;Q(µ∗). Within the interval [λmin;Q(µ∗),∞), we pick an arbitrary point, λa , and use the
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EMM ‘cutting-algorithm’ to determine if there exists a point inUQ, satisfying the normalization
conditions, as well as equation (17), for λl = λa . There are two possibilities:

(A) If there is such a point, then we repeat the entire procedure, but within the interval
[λa, +∞).

(B) If there is no such point, then the entire procedure is repeated within the interval
[λmin;Q(µ∗), λa].

The objective is to eventually generate a reducing sequence of intervals,
[
λa1 , λa2

] ⊃
· · · ⊃ [

λai
, λai+1

]
, until an acceptably small interval is attained. The endpoints will tightly

bound λ
Sup
min;Q.

For the λInf
max;Q, a similar procedure is required. Thus, one would select a point within the

interval (−∞, λmax;Q(µ∗)). Upon picking an arbitrary point within this interval, λa , one would
then determine the existence, or non-existence of a µ-point lying within UQ, and satisfying the
normalization conditions. Such a point must also satisfy equation (18), for λu = λa . If there
is such a µ-point, then the entire procedure is repeated for the interval (−∞, λa). If there is
no such point, then the updated interval is (λa, λmax;Q(µ∗)).

3.3.4. The need for a rough upper bound. All of the above is contingent on making sure
that the boundary of UQ includes no points at which the U(µ) matrix has zero eigenvalues.
This was emphasized previously. The adopted choice of normalization, if not supplemented
with additional linear constraints on the moments, includes such singular points. Specifically,
because the U matrix only includes moments up to order µ2N , while the H matrix includes
the additional moments {µ2N+1, . . . , µ2N+4}, one possible boundary point could be all of the
first 2N + 4 moments set to zero (i.e. µ0�n�2N+3 = 0) and the last moment set to unity,
µ2N+4 = 1. To avoid these, and other such possibilities, any rough upper bound for Egr will
help in restricting UQ to avoid such boundaries.

Let Epub � Egr denote a poor upper bound to the ground-state energy. The true moment
equation for the quartic problem is Egrµp = −p(p − 1)µp−2 + µp+4. Taking p = even, we
have

Epubµp + p(p − 1)µp−2 > µp+4, p = even. (24)

Thus, these additional inequality relations will lead to proper UQ sets. In table 3, we take
Epub = 2.

The results in table 3 confirm the previous theoretical results. Note that the EMM bounds
will be, generally, tighter than those derived from a ‘moment problem extension of Barta’s
theorem’. The calculations were done using the Stieltjes form for the moments (i.e. all odd-
order Hamburger moments were set to zero, ab initio, µodd = 0). The results in table 3
confirm that knowledge of a rough upper bound for the ground-state energy lead to converging
bounds for the ground-state energy. This result is similar to that developed in a Euclidean
time reformulation of the EMM philosophy, as applied to positive matrices (Handy and
Ndow 1992).

4. Conclusion

We have outlined a theoretical procedure for transforming Barta’s configuration space theorem
into a moment problem equivalent. The advantages of the latter are that it leads to a (quasi)-
convexity/concavity reformulation that avoids multi-extrema difficulties associated with the
configuration space formulation. In addition, by so doing, we solve the problem of defining a
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Table 3. Results of the quasi-convexity/concavity analysis (i.e. ‘moment problem reformulation
of Barta’s theorem’) applied to the quartic potential problem: −� ′′(x) + x4�(x) = E�(x).

Moment order P ∗ Theorem 4 bounds EMM bounds

6 .934 < Egr < 1.170 .934 < Egr < 1.150
7 1.021 < Egr < 1.168 1.028 < Egr < 1.153
8 1.027 < Egr < 1.080 1.028 < Egr < 1.067
9 1.050 < Egr < 1.068 1.059 < Egr < 1.067

10 1.055 < Egr < 1.063 1.059 < Egr < 1.062
11 1.055 < Egr < 1.062 1.059 < Egr < 1.061
12 1.0602 < Egr < 1.0613 1.0602 < Egr < 1.0610

P ∗: {µ2ρ |0 � ρ � P }.

procedure for improving Barta’s bounds, once an initial trial configuration is used. This was
an outstanding, theoretical problem, within the configuration space formulation. We show that
the eigenvalue moment method (EMM) is an integral part of this procedure, and allows us to
prove theorem 4. In turn, the results presented here support (‘prove’) the empirically observed
fact that the EMM feasibility energy values correspond to a continuous set (an interval) since
it is bounded by the supremum and infimum of the extremal eigenvalues associated with the
underlying generalized eigenvalue problem.

It should be emphasized that although the previous effort was focused on determining the
eigenenergy, one can also generate converging bounds on the individual moments themselves,
since these must lie in a bounded, convex, space. Thus, for example, in one dimension, one
could ask, what are the moment values of the function, �(x) = e(−x4+x2). Given that this
function satisfies −� ′′(x)+ [−8x2 −16x4 + 16x6]� = λ�, with λ = −2, and this differential
system admits a, bounded, positive solution, one can apply all of the previous formalism to
compute the moments through converging lower and upper bounds.

One of the reviewers posed an interesting question: Can the previous method(s) be applied
to studying the Schwinger–Dyson equations? In statistical physics, and Euclidean formulations
of field theory (i.e. path integral representations), all the various correlation functions may be
regarded as moments of positive functionals. Thus, consider expressions of the type

µp1,...,pN
≡

∫
dx1 · · ·

∫
dxN

N∏
i=1

x
pi

i exp(−F [x1, . . . , xN ]),

where the function, F [−→x ], is assumed to be a polynomial-type function (i.e. of finite degree in
each variable). The kernel exp(−F [x1, . . . , xN ]) is assumed to be asymptotically vanishing.
One can apply the previous formalism (including the EMM approach) to determining
converging bounds on these moment expressions. To initiate this one first rewrites the kernel
in terms of some convenient differential relation:

∂qn

xn
exp(−F [−→x ]) = polynomialn([

−→x ]) exp(−F [−→x ]).

These differential relations, in turn, lead to a moment equation set of constraints on the
µp1,...,pN

moments. Thus, in principle, one can also extend the previous approach to such
systems, including those for N → ∞, which would correspond to the field theoretic cases.
The algorithmic details of this are under investigation. The author extends his appreciation to
the reviewer for this question.



3438 C R Handy

Acknowledgments

This work benefited from partial, visitation support extended to the author through NSF
award NBTC-URG 47956-7824, involving Cornell University’s Nanobiotechnology Center
and Clark Atlanta University (CAU). The efforts, in this regard, of Dr Ishrat Khan are gratefully
acknowledged. This work benefited from discussions with Dr Lois Pollack’s group focusing
on protein folding studies. Additional insights from discussions with Mr Harold Brooks,
Professor Daniel Bessis, Dr Christopher J Tymczak, and Mr Siddharth Joshi (with much
appreciation for assisting in understanding some of the mathematical convexity/concavity
theorems), as well as the computing resources of CAU’s Center for Theoretical Studies of
Physical Systems, are gratefully acknowledged.

Appendix A. Technical preliminaries

In order to clarify the notation used in connection with the new contributions of this work, we
develop them in the context of a short technical overview of the eigenvalue moment method
(EMM). The EMM will also play an important role in proving some of the theorems introduced
in this work; therefore, its review, here, will facilitate the overall understanding of our new
results.

A.1. The moment equation

All of our results are predicated on being able to transform the Schrödinger equation into
a moment equation representation. This is always possible for multidimensional systems
with rational fraction potentials. For problems not of this type, it still may be possible to
identify coordinate systems in which the transformed Schrödinger equation involves function
coefficients that are of rational fraction form. This was the case for the quadratic Zeeman
effect, as previously cited, for which parabolic coordinates led to the identification of a moment
equation. Despite these limitations, these restrictions still define a large and important class
of physics problems.

Because our intent is to develop the underlying theory, we have chosen to limit all
discussions, and examples, to one-dimensional systems, for simplicity.

For one-dimensional systems, the moment equation corresponds to a recursive, linear,
homogeneous, finite difference equation of order 1+ms , wherein all of the moments are linearly
dependent on the first 1 + ms moments {µ0, . . . , µms

}. The latter will be referred to as the
initialization moments, or the missing moments. Once any suitable normalization prescription
is adopted, the moments can be written in terms of the unconstrained initialization moments.
The form of the normalization prescription will vary, depending on the nature of the problem
(i.e. Stieltjes, Hamburger, etc). In the Hamburger case, the even moments must be positive, the
odd moments can have arbitrary signature. We want to choose a normalization prescription
that automatically bounds the initialization moments. For the Hamburger case, one must have
ms = even, and we can take µ0 + µms

= 1. It then follows that |µ�| � µ0 + µms
= 1,

for 0 � � � ms . Since µ0 = 1 − µms
, all of the remaining initialization moments are

unconstrained. We can now write the moment equation as

µp = M̂E(p, 0) +
ms∑
�=1

M̂E(p, �)µ�, p � 0, (A.1)
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where the M̂E(p, �) are known coefficients, nonlinearly dependent on the energy, E. We
note that the (unconstrained) initialization moments must lie within the ms dimensional cube:(
µ1, . . . , µms

) ∈ (−1, 1)ms .

A.2. Stieltjes–Pade positivity quantization

For parity invariant systems, the change of variables x = √
y, y � 0, transforms

the Hamburger moment problem (involving functions on the entire real axis, �, µp =∫ +∞
−∞ dx xp�(x)) into a Stieltjes moment problem (functions restricted to the nonnegative

real axis, up = ∫ ∞
0 dy yp�(y)). For some of these systems, such as the harmonic oscillator

problem (i.e. ∂2
x� + x2�(x) = E�(x) ), the moment equation’s order becomes unity, or

ms = 0. In such cases, the even-order Hamburger moments of the wavefunction become
Stieltjes moments of the modified wavefunction

�(y) ≡ �(
√

y)√
y

: µ2ρ = uρ =
∫ ∞

0
dyyρ�(y).

Because ms = 0, the Stieltjes moments for the ground state become (known) nonlinear
functions of E, the energy variable (i.e. uρ+1 = Euρ + 2ρ(2ρ − 1)uρ−1, u0 ≡ 1, u1 = E, u2 =
2 + E2, etc).

Since the Stieltjes moments for the �-ground state are known functions of E, these then
also determine the Pade approximants (Baker 1975), [M|N ](E;s), for the associated Stieltjes
integral, I (s) = ∫ ∞

0 dy
�(y)

1+sy
.

It is a well-known theorem that if a Stieltjes measure is positive, then the [M|M] and
[M − 1|M] Pade approximants must satisfy a nested structure:

[M − 1|M](Eg;s) � [M|M + 1](Eg;s) � I (s) � [M + 1|M + 1](Eg;s) � [M|M](Eg;s) (A.2)

Handy (1984) discovered that one could use this nested behaviour to quantize the ground-
state energy, through converging lower and upper bounds. Thus, for arbitrary E, one generates
the first Q Stieltjes moments (and all the Pade approximants that can be generated from them),
and determines the energy interval,

(
EL

Q,EU
Q

)
, of feasible energy values that lead to Pade

approximants satisfying the above nested structure. The endpoints of the feasibility energy
interval become the numerically generated lower and upper bounds to the ground-state energy:
EL

Q � Egr � EU
Q . The entire process is repeated at the next higher order (Q → Q+1), resulting

in a reduction of the feasibility energy interval. In this manner, geometrically converging,
lower and upper bounds are obtained.

A.3. Hankel–Hadamard determinant positivity quantization

Since Pade approximants could not be easily extended to multidimensions, an alternate
equivalent to the above moment problem quantization procedure was required. The standard
moment problem positivity constraints, for a nonnegative function, f (x) � 0 (excluding
distribution-type expressions with zero measure support), are generally expressed in terms of
the Hankel–Hadamard (HH) determinantal, inequality constraints, given in equation (A.5).
These are derived through the quadratic form integral expression

∫ +∞

−∞
dx

(
N∑

n=0

Cnx
n

)2

f (x) > 0, (A.3)
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or

〈−→C |




µ0, µ1, . . . , µN

µ1, µ2, . . . , µN+1

· · ·
µN,µN+1, . . . , µ2N


 |−→C 〉 > 0, ∀−→

C �= −→
0 . (A.4)

The real and symmetric Hankel moment matrix (defined in equation (A.4)) is therefore positive
definite, with positive eigenvalues. Thus all of its subdeterminants of the following type, must
be positive:

�m,n(µ) > 0,m(even) � 0, n � 0, (A.5)

where

�m,n(µ) ≡ Det




µm,µm+1, . . . , µm+n

µm+1, µm+2, . . . , µm+n+1

· · ·
µm+n, µm+n+1, . . . , µm+2n


 . (A.6)

For the Hamburger moment problem (i.e. the moment constraints leading to a positive function
on �), it is sufficient to require that �m,n(µ) > 0 for m = 0, n � 0 (Baker 1975).

It is clear that the HH inequalities are necessary conditions for any positive function. That
they are sufficient for establishing the positivity of the underlying function can be motivated
as follows. One can approximate the Gaussian, Dirac distribution, in terms of the quadratic
form expansion. That is

1

β
√

π
e− (x−τ)2

β = 1

β
√

π

(
e− (x−τ)2

2β

)2

≈ 1

β
√

π


 J∑

j=0

1

j !

(
− (x − τ)2

2β

)j



2

.

Thus, for sufficiently large J and small β values, the HH constraints are essentially sampling
the local behaviour of a (bounded, asymptotically decaying) function, and requiring that it be
positive.

The HH determinants can be extended to multidimensions, as developed in the work by
Devinatz (1957).

The first use of the HH, moment problem (MP), positivity theorems to quantize the
bosonic ground-state energy was published by Handy and Bessis (1985). We briefly outline the
essentials of this work. Through the moment equation’s structure, equation (A.1), the moments
are explicitly dependent on the energy variable, E, and the (unconstrained) initialization
moments,

{
µ1, . . . , µms

}
. So too are the HH determinants, �0,n(µ) = �0,n

(
µ1, . . . , µms

;E
)
,

for n < ∞. Given an arbitrary E value, and (even number) moment expansion order, Q < ∞
(thus all the moments µp�Q are generated) one determines if there exists an ms-dimensional,
initialization moment solution set, UQ;E ⊂ (−1, 1)ms , satisfying all the corresponding HH
inequalities

(
�0,0(µ) > 0,�0,1(µ) > 0, . . . ,�0, Q

2
(µ) > 0

)
. If this solution set exists

(UQ;E �= �), then the associated E value is a possible physical ground-state value, to order Q.
If not (UQ;E = �), then the chosen E value is not a possible physical value for the ground-state
energy. In this manner, a feasibility energy interval is determined, as before, in the Pade case.
It can be shown that UQ;E must be a convex set, if it exists

(
E ∈ (

EL
Q,EU

Q

) ⇐⇒ UQ;E �= �)
.

A.4. Variational-linear programming, moment problem quantization

Although the previous HH-MP procedure created greater flexibility in extending the underlying
positivity quantization philosophy to more systems, its structure (i.e. the nonlinear dependence
on the moments) made it too difficult for multidimensional systems.
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Any bounded, convex, set (with nonlinear boundaries), such as the UQ;E’s can be
represented as the intersection of infinitely many bounded polytopes (convex sets with
hyperplanes as boundaries). One realizes that equation (A.4) defines this equivalent, alternative
linear representation for the HH inequalities. That is, instead of working with a finite number
of (large dimensioned) nonlinear inequality relations (i.e. the HH constraints), one can work
with an equivalent set of infinitely many, linear, constraints. This provided the theoretical
breakthrough in facilitating the implementation of moment problem positivity quantization
strategy.

In order to capitalize on this linearized equivalent, one must devise an optimization strategy
to essentially determine the optimal

−→
C ’s, or cutting vectors (refer to equation (A.4)). This

required a clever combination of the moment equation formalism with linear programming
theory (Chvatal 1983). Thus, through the ensuing cutting algorithm, devised by Handy, given
an arbitrary E value, one rapidly ‘cuts up’ the starting (normalization) polytope (the hypercube,
(−1, 1)ms ) into either the null set (thereby establishing that UQ;E = � and E is unphysical), or
into a polytope, P ⊃ UQ;E , containing an initialization point, −→̃

µ = (
µ̃1, . . . , µ̃ms

)
for which

all the associated Hankel matrices are positive (concluding that −→̃
µ ∈ UQ;E , hence UQ;E �= �,

and that particular E is a possible value for the ground-state energy).
The above, entire, procedure is the eigenvalue moment method (EMM), which was used

to solve the previously cited quadratic Zeeman problem.

Appendix B. Proof of theorems

We develop the basic relations and prove the various theorems previously quoted, with the
exception of theorem 1 which is a standard result in the optimization theory, particularly in the
context of mathematical economics. We will be limiting our discussion to the one-dimensional
case, for simplicity.

Two crucial elements are required for deriving Barta’s theorem in equation (1). The
first is that in the configuration space representation, the bosonic ground-state wavefunction,
�gr(x), must be of uniform signature, and thus can be taken to be positive, �gr(x) > 0.
Accordingly, given any trial function, �, of arbitrary signature, and with a bounded and
continuous second-order derivative, one obtains the zero identity for the scalar product:
〈�gr|(H − Egr)|�〉 = 0, where Egr is the ground-state energy, and H is the Schrödinger
equation Hamiltonian. Therefore, H − Egr, when applied to �, must have a zero at some
location

(H − Egr)�(x0) = 0. (B.1)

The second assumption is that if the trial function is strictly positive, � > 0, then the
range of the function R(x) = H�(x)

�(x)
must define a bounded subset of � that contains Egr:

Egr ∈ {R(x)|∀x ∈ �}. This leads to equation (1) or InfxR(x) � Egr � SupxR(x). Positivity
is an important cornerstone of Barta’s theorem.

LetS and I denote the supremum and infimum, respectively, for an arbitrary trial function,
�, lying within the set of functions, C, which are positive, bounded (exponentially decaying),
and have continuous, finite, second derivatives:

I ≡ Inf

(
H�(x)

�(x)

)
, (B.2)

S ≡ Sup

(
H�(x)

�(x)

)
. (B.3)
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Define the configurations:

L�(x; λl) ≡ H�(x)

�(x)
− λl � 0, ⇐⇒ λl � I, (B.4)

and

U�(x; λu) ≡ λu −
(

H�(x)

�(x)

)
� 0, ⇐⇒ λu � S. (B.5)

Although the trial functions must be positive (i.e. strictly positive) if they are to be easily
used within Barta’s procedure, the {U�(x), L�(x)} functions can be nonnegative (provided the
zeros correspond to sets of zero measure) and still generate strictly positive HH determinants.
Accordingly,

(H − λl)�(x) � 0, ⇐⇒ λl � I, (B.6)

and

(λu − H)�(x) � 0, ⇐⇒ λu � S. (B.7)

Let us focus on the first relation:

�λl
(x) = (H − λl)�(x) � 0, λl � I. (B.8)

For any �(x) ∈ C,�λl
(x) must be integrable and positive almost everywhere (i.e.

nonnegative). Thus, its power moments must satisfy the standard positivity relations of
the moment problem (Shohat and Tamarkin 1963), as discussed in the Introduction.

We are restricting our analysis to Hamiltonians with rational fraction potentials, since these
are those most easily transformable into a moment equation representation. For simplicity,
the following discussion assumes that the potential is of (multidimensional) polynomial form.
The generalization to singular potentials is straightforward, and briefly discussed below.

In order to make our analysis more transparent, we will consider the case of the quartic
potential problem: H = −∂2

x + x4. Then �λl
(x) = (−∂2

x + x4 −λl

)
�(x), and we can generate

the power moments of the LHS, based on those of �(x).
Define the power moments of the trial function by µp ≡ ∫ +∞

−∞ dx xp�(x), p � 0. By
assumption (i.e. � > 0), these must satisfy the Hankel–Hadamard determinantal constraints
for the Hamburger moment problem: �m,n(µ) > 0, for m = 0, n � 0. These constraints are
required for all positive (more generally, nonnegative) functions on the real axis.

The power moments of �λl
(x),

νp ≡
∫ +∞

−∞
dx xp�λl

(x), p � 0, (B.9)

satisfy (i.e. upon substituting the �/� relation and performing the necessary integration by
parts)

νp = −p(p − 1)µp−2 + µp+4 − λlµp, p � 0. (B.10)

If λl � I, then the ν moments generate the Hankel matrix that must satisfy the (HH) positivity
constraints:

�0,N (ν(λl)) = Det


 · · ·

−(n1 + n2)(n1 + n2 − 1)µn1+n2−2 + µn1+n2+4 − λlµn1+n2

· · ·


 > 0, (B.11)

for all 0 � n1, n2 � N < ∞.
The form of the finite-dimensional Hankel matrix in equation (B.11) is symbolized by H

-λlU, with U the positive definite Hankel matrix for �’s moments.



(Quasi)-convexification of Barta’s (multi-extrema) bounding theorem 3443

We note that the {ν0, . . . , ν2N } moments, used to define the Hankel moment matrix for �λl
,

depend on the {µ0, . . . , µ2N+4} moments of �. Thus, we are working within the moment space
UQ where Q = 2N + 4. Notational consistency would suggest that in the following discussion
we make reference to λmin;QN

(µ) where, QN ≡ 2N + 4. To streamline the discussion, we will
simply use the notation λmin;N .

Define by λmin;N(µ) the smallest zero satisfying (the µ dependence is not explicitly given,
for greater clarity)

�0,N (ν(λmin;N)) = 0, (B.12)

or

Det(H(µ) − λmin,NU(µ)) = 0. (B.13)

Accordingly, (−∞, λmin;N(µ)) ⊃ (−∞, I). This is because, so long as λl � I,
equation (B.11) must hold. Hence, any root in the λ-variable domain must be larger than I.

We now show that the sequence {λmin,N (µ)|N � 0} must be nonincreasing, or
λmin,N (µ) � λmin,N+1(µ). The easiest way is to exploit the positive definiteness of U, which
leads to the Cholesky decomposition U = RtR, where R is the unique, upper triangular matrix,
with positive diagonal entries. Its inverse is also of upper triangular form. Accordingly, λmin;N
is also the smallest zero for the equation

DetR−tHR−1 − λmin,N1 = 0. (B.14)

Of course, this is also the smallest eigenvalue of the indicated real, symmetric matrix, which,
in turn, defines a nonincreasing sequence; thus proving the previous claim.

With regards to the λu’s, an analogous result follows. Thus, if λu � S, then

�0,N (−ν(λu)) = Det


 · · ·

λuµn1+n2 + (n1 + n2)(n1 + n2 − 1)µn1+n2−2 − µn1+n2+4

· · ·


 > 0, (B.15)

for all 0 � n1, n2 � N < ∞.
We now define λmax;N(µ) as the largest root satisfying

�0,N (−ν(λmax;N)) = 0, (B.16)

or

Det(λmax,N U(µ) − H(µ)) = 0. (B.17)

(Note that λmax;N is also the largest root of the generalized eigenvalue problem, Det(H(µ) −
λmax,NU(µ)) = 0.) It then follows that (λmax;N, +∞) ⊃ (S, +∞), and they form a
nondecreasing sequence: λmax;N(µ) � λmax;N+1(µ). This follows from the observation that
−λmax;N is the smallest root of

Det(−H(µ) − (−λmax,N )U(µ)) = 0,

and through the Cholesky decomposition of the positive U matrix, the −λmax;N forms
a nonincreasing sequence of smallest eigenvalues for the finite and symmetric matrix:
R−t (−H)R−1.

B.1. Theorem 3

The first part of theorem 3 (equations (8) and (9)) follows from the previous results. The latter
part of theorem 3 (equation (10)) results from the fact that the only λl values satisfying all of the
HH positivity inequalities are those obeying λl � I, similarly for λu: limn→∞ λmin;n(µ) = I,
and limn→∞ λmax;n(µ) = S.
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B.1.1. Alternative derivation. We include some additional remarks that provide a different
perspective on all the above. We limit the discussion, for brevity, to the λmin;n case.

The HH positivity theorems require that all of the HH determinants, for the ν-moments,
be positive, as functions of λl . To simply investigate the positivity properties of one of these
determinants is insufficient. Thus, we can either work with the quadratic form inequality in
equation (A.4), adapted to the νp(µ, λl) moments (equation (B.10)), for the ((N +1)×(N +1))-
dimensional Hankel matrix, HN(ν):

〈−→C |




ν0(µ, λl), ν1(µ, λl), . . . , νN(µ, λl)

ν1(µ, λl), ν2(µ, λl), . . . , νN+1(µ, λl)

· · ·
νN(µ, λl), νN+1(µ, λl), . . . , ν2N(µ, λl)


 |−→C 〉 > 0, ∀−→

C �= −→
0 , (B.18)

or we can work with the N + 1 HH determinants:

�0,n(ν(µ, λl)) > 0, n = 0, . . . , N. (B.19)

The set of λl values satisfying equation (B.18) must correspond to a convex set (Chvatal
1983) since it represents an infinite set of linear inequalities in the λ-variable. Thus, the
feasibility λ set must be a semi-infinite interval. That is, if equation (B.18) is satisfied by the
two values λl = λ

(σ1,2)

l ,

〈−→C | − (n1 + n2)(n1 + n2 − 1)µn1+n2−2 + µn1+n2+4 − λ
(σ1)
l µn1+n2 |

−→
C 〉 > 0, (B.20)

〈−→C | − (n1 + n2)(n1 + n2 − 1)µn1+n2−2 + µn1+n2+4 − λ
(σ2)
l µn1+n2 |

−→
C 〉 > 0, (B.21)

then it must be satisfied by all λl = sλ
(σ1)
l + (1 − s)λ

(σ2)
l , for � s � 1 (simply multiply each of

the above two inequalities by s � 0 and 1− s � 0, respectively, and add); thereby establishing
the convex nature of the set of allowed λl values.

Since λl ∈ (−∞, I) satisfies equation (B.18) (from equation (B.6)), it follows that
there exists a ‘largest’ semi-infinite interval (−∞, λl;N), with I � λl;N , satisfying all of
equation (B.18). It is clear that λl;N+1 � λl;N , since from equation (B.18), the quadratic form
inequalities for the HN+1(ν) Hankel matrix include all of those corresponding to the HN(ν)

case. The λl;N value must then be the smallest root of the equation Det(HN(ν(µ, λl)) = 0.
That is, λl;N = λmin;N .

B.1.2. Extension to rational fraction (singular) potentials. The preceding, alternative, proof
also shows us how to extend our results to the case of rational fraction type potentials. Consider
the perturbed quartic potential V (x) = x4 + 1

x2+2 . Limiting ourselves to the ‘infimum’ case,
for simplicity, we see that equation (B.8) can be modified by multiplying both sides by the
positive denominator polynomial, x2 + 2:

(x2 + 2)�λl
(x) = (−(x2 + 2)∂2

x + (x2 + 2)x4 + 1 − λl(x
2 + 2))�(x) > 0, λl � I.

(B.22)

Thus, the RHS generates a positive (Hankel) matrix, and one can proceed to define the
corresponding λmin;N , which satisfies all the relations described above.

Thus, in general, as long as one multiplies equation (B.8), or its multidimensional
counterpart, by positive ‘denominator’ type polynomials, in order to achieve a Hankel matrix
structure, then all of our results apply.
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B.1.3. Additional remarks. Given that the function H�
�

can have multiple extrema, having
a systematic method of computing the infimum/supremum (as opposed to searching over all
local extrema) may make the above results very convenient. That is, one can determine the
infimum (I(µ)) and supremum (S(µ)) by studying the asymptotic limits of the λmin;n and
λmax;n, combined with sequence acceleration techniques, where possible.

Another important aspect of the previous results is that we can now extend Barta’s result
to positive functions which may not be given in closed form, but whose moments may be
known. We provide one example of this in section 3.

B.2. Theorem 2

We now prove theorem 2 by way of the quartic potential problem. Whereas in the previous
proofs we were working with an infinite set of numbers, {µp|p � 0}, known to be the moments
of a positive function, we will now be working with a finite set of moments that satisfy the
moment equation, as well as the corresponding positivity theorems.

Let us assume that the {µp|0 � p � P } moments satisfy the moment equation,

−p(p − 1)µp−2 + µp+4 − Eµp = 0, 0 � p � P − 4. (B.23)

Alternatively,

µp+4 = Eµp + p(p − 1)µp−2, 0 � p � P − 4. (B.24)

Clearly, this recursive relation separates into the even and odd order moments. There are more
efficient ways of dealing with such relations, however, for our immediate purposes, the above
is satisfactory. Also, we implicitly assume that some normalization has been chosen.

Let P = 2M . Again, we assume that the moments

{µ0, µ1, . . . , µP=2M} ∈ UP=2M;EMM ⊂ UP=2M,

satisfy the moment equation and all the HH determinantal inequality conditions that can be
generated from them, for some E value. Thus �0,n(µ) > 0, for � M . From equation (B.11),
we see that the U matrix involves all of the moments up to order µ2N , where N is to be
determined. The H matrix involves the highest order moment, µ2N+4. Thus, we want
2N + 4 = 2M . That is, the highest dimension generalized eigenvalue problem (GEP) is
N + 1 = M − 1.

From equation (B.23), it follows that for the special set of moments being considered, we
have H = EU. The corresponding GEP problem becomes

Det(H − λU) = Det(EU − λU) = (E − λ)N+1Det(U), (B.25)

where Det(U) = �0,N (µ), revealing its (N + 1) th-order degeneracy. Hence

λmin;N(µE) = λmax;N(µE). (B.26)

In summary, the GEP problem becomes extremely degenerate for those moments satisfying
the moment equation, as well as all of the corresponding HH positivity constraints. The
allowable E values are those generated through the EMM procedure corresponding to moment
order P = 2M .

B.3. Theorem 4

Define the supremum of the smallest GEP eigenvalue by λ
sup
min;Q = Supµ∈UQ

λmin;Q(µ); and
the infimum of the largest GEP eigenvalue by λinf

max;Q = Infµ∈UQ
λmin;Q(µ). Since the EMM

related set of moments satisfy UQ;EMM ⊂ UQ, and on UQ;EMM the extremal eigenvalues are
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degenerate, it follows that the EMM upper bound, must be a lower bound to λ
sup
min;Q. Likewise,

the EMM lower bound, must be an upper bound to λinf
max;Q. This confirms equation (12).

In the Q → ∞ limit, the entire moment space, for a given set of moments −→µ =
(µ0, . . . , µj→∞), we must have that λmin;∞(µ) < Egr < λmax;∞(µ), from equation (10).
Clearly then λ

sup
min;∞ = Egr = λinf

max;∞; confirming equation (13).
Again, we implicitly assumed that UQ satisfies some physically motivated normalization

prescription.
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